Distributed Finite-Time Coverage Control of Multi-Quadrotor Systems with Switching Topology

This paper studies the distributed coverage control problem of multi-quadcopter systems connected with fixed and switching network topologies to guarantee the finite-time convergence. The proposed method modifies the objective function originating from the locational optimization problem to accommod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-06, Vol.11 (12), p.2621
Hauptverfasser: Tnunay, Hilton, Moussa, Kaouther, Hably, Ahmad, Marchand, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the distributed coverage control problem of multi-quadcopter systems connected with fixed and switching network topologies to guarantee the finite-time convergence. The proposed method modifies the objective function originating from the locational optimization problem to accommodate the consensus constraint and solves the problem within a given time limit. The coverage problem is solved by sending angular-rate and thrust commands to the quadcopters. By exploiting the finite-time stability theory, we ensure that the rotation and translation controllers of the quadcopters are finite-time stable both in fixed and switching communication topologies, able to be implemented distributively, and able to collaboratively drive the quadcopters towards the desired position and velocity of the Voronoi centroid independent of their initial states. After carefully designing and analyzing the performance, numerical simulations using a Robot Operating System (ROS) and Gazebo simulator are presented to validate the effectiveness of the proposed control protocols.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11122621