Human soluble CD39 displays substrate inhibition in a substrate-specific manner

CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-06, Vol.13 (1), p.8958-8958, Article 8958
Hauptverfasser: Vadlamani, Venkat M. K., Gunasinghe, Kavinda K. J., Chee, Xavier W., Rahman, Taufiq, Harper, Matthew T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-36257-3