Effects of chronic exposure to the fungicide vinclozolin on gut microbiota community in an aquatic turtle
Environmental issues associated with the widespread use of agricultural chemicals are being seriously concerned. Of them, toxicological impacts of fungicides in aquatic organisms are often overlooked. Here, soft-shelled turtle (Pelodiscus sinensis) hatchlings were exposed to different concentrations...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2022-07, Vol.239, p.113621-113621, Article 113621 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Environmental issues associated with the widespread use of agricultural chemicals are being seriously concerned. Of them, toxicological impacts of fungicides in aquatic organisms are often overlooked. Here, soft-shelled turtle (Pelodiscus sinensis) hatchlings were exposed to different concentrations of vinclozolin (0, 5, 50, 500 and 5000 μg/L) for 60 days to investigate the impact of fungicide exposure on their gut microbial composition and diversity. Vinclozolin exposure significantly affected the composition of the gut microbiota in hatchling turtles. Unexpectedly, gut bacterial diversity and richness of vinclozolin-exposed turtles (but not for the 5000 μg/L-exposed group) were relatively higher than control ones. At the phylum level, the abundance of Firmicutes was decreased, while that of Proteobacteria was increased in high-concentration groups. At the genus level, some bacterial genera including Cellulosilyticum, Romboutsia and Clostridium_sensu_stricto, were significantly changed after vinclozolin exposure; and some uniquely observed in high-concentration groups. Gene function predictions showed that genes related to amino acid metabolism were less abundant, while those related to energy metabolism more abundant in high-concentration groups. The prevalence of some pathogens inevitably affected gut health status of vinclozolin-exposed turtles. Such gut microbiota dysbiosis might be potentially linked with hepatic metabolite changes induced by vinclozolin exposure.
•Fungicides potentially alter growth and gut bacteria of aquatic reptiles.•Vinclozolin exposure profoundly affected gut microbiota composition in turtle hatchlings.•Vinclozolin exposure increased the abundance of some pathogens in the gut of turtle hatchlings.•Vinclozolin-induced gut microbial changes might be linked with hepatic metabolic disorders. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2022.113621 |