Characteristics of Raindrop Size Distribution on the Eastern Slope of the Tibetan Plateau in Summer
Precipitation microphysics over the Tibetan Plateau (TP) remain insufficiently understood, due to the lack of observations and studies. This paper presents a comprehensive investigation of the raindrop size distribution (DSD) for rainfall that happened on the eastern slope of TP in summer. DSD diffe...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2020-06, Vol.11 (6), p.562 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precipitation microphysics over the Tibetan Plateau (TP) remain insufficiently understood, due to the lack of observations and studies. This paper presents a comprehensive investigation of the raindrop size distribution (DSD) for rainfall that happened on the eastern slope of TP in summer. DSD differences between different rain types and under different rain rates are investigated. Confidential empirical relationships between the gamma shape and slope parameters, and between reflectivity and rain rate are proposed. DSD properties in this area are also compared with those in other areas. The results indicate that the stratiform and convective rains contribute to different rain duration and amount, with diverse rainfall macro- and microphysical properties. The rain spectra of two rain types can become broader with higher concentrations as the rain rate increases. DSDs in this area are different to those in other areas. The stratiform DSD is narrower than that in the non-plateau area. The two rain types of this area both have higher number concentrations for 0.437–1.625 mm raindrops than those of the mid-TP. The relationships of shape–slope parameters and reflectivity–rain rate in this area are also different from those in other areas. The rain spectra in this area can produce a larger slope parameter under the same shape parameter than in the mid-TP. The convective rain can produce a smaller rain rate under the same reflectivity. The accuracy proposed reflectivity–rain rate relationship in application to quantitative rainfall estimation is also discussed. The results show that the relationship has an excellent performance when the rain rate exceeds 1 mm h−1. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos11060562 |