PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma
Angiogenesis is a hallmark of cancer. However, most malignant solid tumors exhibit robust resistance to current anti-angiogenic therapies that primarily target VEGF pathways. Here we report that endothelial-mesenchymal transformation induces glioblastoma (GBM) resistance to anti-angiogenic therapy b...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-08, Vol.9 (1), p.3439-13, Article 3439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiogenesis is a hallmark of cancer. However, most malignant solid tumors exhibit robust resistance to current anti-angiogenic therapies that primarily target VEGF pathways. Here we report that endothelial-mesenchymal transformation induces glioblastoma (GBM) resistance to anti-angiogenic therapy by downregulating VEGFR-2 expression in tumor-associated endothelial cells (ECs). We show that VEGFR-2 expression is markedly reduced in human and mouse GBM ECs. Transcriptome analysis verifies reduced VEGFR-2 expression in ECs under GBM conditions and shows increased mesenchymal gene expression in these cells. Furthermore, we identify a PDGF/NF-κB/Snail axis that induces mesenchymal transformation and reduces VEGFR-2 expression in ECs. Finally, dual inhibition of VEGFR and PDGFR eliminates tumor-associated ECs and improves animal survival in GBM-bearing mice. Notably, EC-specific knockout of PDGFR-β sensitizes tumors to VEGF-neutralizing treatment. These findings reveal an endothelial plasticity-mediated mechanism that controls anti-angiogenic therapy resistance, and suggest that vascular de-transformation may offer promising opportunities for anti-vascular therapy in cancer.
Resistance to anti-angiogenic therapies often occurs in patients. Here, the authors demonstrate the role of PDGF signaling in GBM resistance to anti-VEGF treatment via a mechanism that involves endothelial-mesenchymal transformation and transcriptional regulation of VEGFR-2. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-05982-z |