Effect of Unburned Pulverized Coal on the Melting Characteristics and Fluidity of Blast Furnace Slag

A substantial amount of attention has been paid to viscosity due to its substantial effect on the fluid dynamics of molten blast furnace slag and slag metal reaction kinetics during the pyrometallurgy process. To clarify the influence mechanism of unburned pulverized coal (UPC) on blast furnace (BF)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2021-06, Vol.11 (6), p.579
Hauptverfasser: Xiang, Dongwen, Shen, Fengman, Jiang, Xin, Gao, Qiangjian, Zheng, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A substantial amount of attention has been paid to viscosity due to its substantial effect on the fluid dynamics of molten blast furnace slag and slag metal reaction kinetics during the pyrometallurgy process. To clarify the influence mechanism of unburned pulverized coal (UPC) on blast furnace (BF) slag viscosity, the effects of different contents of UPC on the BF slag viscosity, free-running temperature and viscous flow activation energy were investigated. The slag viscosity was measured by the rotating cylinder method, and the microstructure of the cooled slag was observed by SEM. As a result, the main reason for a change in the slag viscosity, free-running temperature and viscous flow activation energy was that the UPC entering the slag formed a large number of white particles that predominantly comprised deposited carbon and a high melting point solid solution. In addition, the disintegration or polymerization of the SixOyz- structure was also a contributing factor. When the content of the UPC was 0.6%, the free-running temperature and viscous flow activation energy of slag were 1623 K and 120.969 kJ/mol, respectively, which are lower than those of the slag without UPC. However, the free-running temperature and viscous flow activation energy increased to 1668 K and 286.625 kJ/mol, respectively, when the content of UPC increased to 4%, which are higher than those of slag without UPC.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst11060579