Boundary vertex algebras for 3d $\mathcal{N}=4$ rank-0 SCFTs
We initiate the study of boundary Vertex Operator Algebras (VOAs) of topologically twisted 3d $\mathcal{N}=4$ rank-0 SCFTs. This is a recently introduced class of $\mathcal{N}=4$ SCFTs that by definition have zero-dimensional Higgs and Coulomb branches. We briefly explain why it is reasonable to obt...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2024-08, Vol.17 (2), p.057 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We initiate the study of boundary Vertex Operator Algebras (VOAs) of topologically twisted 3d $\mathcal{N}=4$ rank-0 SCFTs. This is a recently introduced class of $\mathcal{N}=4$ SCFTs that by definition have zero-dimensional Higgs and Coulomb branches. We briefly explain why it is reasonable to obtain rational VOAs at the boundary of their topological twists. When a rank-0 SCFT is realized as the IR fixed point of a $\mathcal{N}=2$ Lagrangian theory, we propose a technique for the explicit construction of its topological twists and boundary VOAs based on deformations of the holomorphic-topological twist of the $\mathcal{N}=2$ microscopic description. We apply this technique to the $B$ twist of a newly discovered family of 3d $\mathcal{N}=4$ rank-0 SCFTs ${\mathcal T}_r$ and argue that they admit the simple affine VOAs $L_r(\mathfrak{osp}(1|2))$ at their boundary. In the simplest case, this leads to a novel level-rank duality between $L_1(\mathfrak{osp}(1|2))$ and the minimal model $M(2,5)$. As an aside, we present a TQFT obtained by twisting a 3d $\mathcal{N}=2$ QFT that admits the $M(3,4)$ minimal model as a boundary VOA and briefly comment on the classical freeness of VOAs at the boundary of 3d TQFTs. |
---|---|
ISSN: | 2542-4653 |
DOI: | 10.21468/SciPostPhys.17.2.057 |