Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology

Screening for genomic sequence variants in genes of predictive and prognostic significance is an integral part of precision medicine. Next-generation sequencing (NGS) technologies are progressively becoming platforms of choice to facilitate this, owing to their massively parallel sequencing capabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostics (Basel) 2022-06, Vol.12 (7), p.1539
1. Verfasser: Singh, Rajesh R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Screening for genomic sequence variants in genes of predictive and prognostic significance is an integral part of precision medicine. Next-generation sequencing (NGS) technologies are progressively becoming platforms of choice to facilitate this, owing to their massively parallel sequencing capability, which can be used to simultaneously screen multiple markers in multiple samples for a variety of variants (single nucleotide and multi nucleotide variants, insertions and deletions, gene copy number variations, and fusions). A crucial step in the workflow of targeted NGS is the enrichment of the genomic regions of interest to be sequenced, against the whole genomic background. This ensures that the NGS effort is focused to predominantly screen target regions of interest with minimal off-target sequencing, making it more accurate and economical. Polymerase chain reaction-based (PCR, or amplicon-based) and hybridization capture-based methodologies are the two prominent approaches employed for target enrichment. This review summarizes the basic principles of target enrichment utilized by these methods, their multiple variations that have evolved over time, automation approaches, overall comparison of their advantages and drawbacks, and commercially available choices for these methodologies.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics12071539