A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission
Self-healing and recyclable polymer materials are being developed through extensive investigations on noncovalent bond interactions. However, they typically exhibit inferior mechanical properties. Therefore, the present study is aimed at synthesizing a polyurethane–urea elastomer with excellent mech...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-08, Vol.14 (1), p.4712-4712, Article 4712 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-healing and recyclable polymer materials are being developed through extensive investigations on noncovalent bond interactions. However, they typically exhibit inferior mechanical properties. Therefore, the present study is aimed at synthesizing a polyurethane–urea elastomer with excellent mechanical properties and shape-memory-assisted self-healing behavior. In particular, the introduction of coordination and hydrogen bonds into elastomer leads to the optimal elastomer exhibiting good mechanical properties (strength, 76.37 MPa; elongation at break, 839.10%; toughness, 308.63 MJ m
−3
) owing to the phased energy dissipation mechanism involving various supramolecular interactions. The elastomer also demonstrates shape-memory properties, whereby the shape recovery force that brings damaged surfaces closer and facilitates self-healing. Surprisingly, all specimens exhibite clustering-triggered emission, with cyan fluorescence is observed under ultraviolet light. The strategy reported herein for developing multifunctional materials with good mechanical properties can be leveraged to yield stimulus-responsive polymers and smart seals.
Polymers formed with non-covalent bonds are increasingly being developed, but often show inferior mechanical properties. Here, the authors report the development of high performances polyurethane-urea elastomer with shape-memory assisted self-healing behaviour |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-40340-8 |