Atomic and electronic basis for the serrations of refractory high-entropy alloys
Refractory high-entropy alloys present attractive mechanical properties, i.e., high yield strength and fracture toughness, making them potential candidates for structural applications. Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2017-06, Vol.3 (1), p.1-10, Article 23 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Refractory high-entropy alloys present attractive mechanical properties, i.e., high yield strength and fracture toughness, making them potential candidates for structural applications. Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-entropy alloys and their structure−dominated mechanical properties, thus enabling the development of a predictive approach for rapidly designing advanced materials. Here, we report the atomic and electronic basis for the valence−electron-concentration-categorized principles and the observed serration behavior in high-entropy alloys and high-entropy metallic glass, including MoNbTaW, MoNbVW, MoTaVW, HfNbTiZr, and Vitreloy-1 MG (Zr
41
Ti
14
Cu
12.5
Ni
10
Be
22.5
). We find that the yield strengths of high-entropy alloys and high-entropy metallic glass are a power-law function of the electron-work function, which is dominated by local atomic arrangements. Further, a reliance on the bonding-charge density provides a groundbreaking insight into the nature of loosely bonded spots in materials. The presence of strongly bonded clusters and weakly bonded glue atoms imply a serrated deformation of high-entropy alloys, resulting in intermittent avalanches of defects movement.
High-entropy alloys: cluster-and-glue atoms behind exceptional properties
A cluster-and-glue model of atomic arrangements explains the yield strength and mechanical response of high entropy alloys. Inspired by metallic glass, a team led by William Yi Wang at China’s Northwestern Polytechnical University and collaborators in the United States of America used molecular dynamics to build different atomic arrangements of refractory high entropy alloys consisting of four or more elements. Depending on atomic size and the periodic table group of each atom, some atoms organized into clusters while others glued the clusters together. Chemical bonds broke and formed with plastic deformation as the alloys went from one atomic arrangement to another via the glue atoms, causing defect avalanches explaining the serrated mechanical response of high entropy alloys. Taking into account atomic arrangement may thus help us predict the properties of high entropy alloys. |
---|---|
ISSN: | 2057-3960 2057-3960 |
DOI: | 10.1038/s41524-017-0024-0 |