Determination of Cyanotoxins and Phycotoxins in Seawater and Algae-Based Food Supplements Using Ionic Liquids and Liquid Chromatography with Time-Of-Flight Mass Spectrometry

An analytical procedure is proposed for determining three cyanotoxins (microcystin RR, microcystin LR, and nodularin) and two phycotoxins (domoic and okadaic acids) in seawater and algae-based food supplements. The toxins were first isolated by a salting out liquid extraction procedure. Since the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxins 2019-10, Vol.11 (10), p.610
Hauptverfasser: Giménez-Campillo, Claudia, Pastor-Belda, Marta, Campillo, Natalia, Arroyo-Manzanares, Natalia, Hernández-Córdoba, Manuel, Viñas, Pilar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analytical procedure is proposed for determining three cyanotoxins (microcystin RR, microcystin LR, and nodularin) and two phycotoxins (domoic and okadaic acids) in seawater and algae-based food supplements. The toxins were first isolated by a salting out liquid extraction procedure. Since the concentration expected in the samples was very low, a dispersive liquid-liquid microextraction procedure was included for preconcentration. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (80 mg) was used as green extractant solvent and acetonitrile as disperser solvent (0.5 mL) for a 10 mL sample volume at pH 1.5, following the principles of green analytical chemistry. Liquid chromatography with electrospray ionization and quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) was used. The selectivity of the detection system, based on accurate mass measurements, allowed the toxins to be unequivocally identified. Mass spectra for quadrupole time of flight-mass spectrometry (Q-TOF-MS) and Q-TOF-MS/MS were recorded in the positive ion mode and quantification was based on the protonated molecule. Retention times ranged between 6.2 and 17.9 min using a mobile phase composed by a mixture of methanol and formic acid (0.1%). None of the target toxins were detected in any of the seawater samples analyzed, above their corresponding detection limits. However, microcystin LR was detected in the blue green alga sample.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins11100610