Entanglement of free fermions on Hamming graphs

Free fermions on Hamming graphs H(d,q) are considered and the entanglement entropy for two types of subsystems is computed. For subsets of vertices that form Hamming subgraphs, an analytical expression is obtained. For subsets corresponding to a neighborhood, i.e. to a set of sites at a fixed distan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2023-01, Vol.986, p.116061, Article 116061
Hauptverfasser: Bernard, Pierre-Antoine, Crampé, Nicolas, Vinet, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free fermions on Hamming graphs H(d,q) are considered and the entanglement entropy for two types of subsystems is computed. For subsets of vertices that form Hamming subgraphs, an analytical expression is obtained. For subsets corresponding to a neighborhood, i.e. to a set of sites at a fixed distance from a reference vertex, a decomposition in irreducible submodules of the Terwilliger algebra of H(d,q) also yields a closed formula for the entanglement entropy. Finally, for subsystems made out of multiple neighborhoods, it is shown how to construct a block-tridiagonal operator which commutes with the entanglement Hamiltonian. It is identified as a BC-Gaudin magnet Hamiltonian in a magnetic field and is diagonalized by the modified algebraic Bethe ansatz.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2022.116061