APEC: an accesson-based method for single-cell chromatin accessibility analysis

The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution. However, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2020-05, Vol.21 (1), p.116-116, Article 116
Hauptverfasser: Li, Bin, Li, Young, Li, Kun, Zhu, Lianbang, Yu, Qiaoni, Cai, Pengfei, Fang, Jingwen, Zhang, Wen, Du, Pengcheng, Jiang, Chen, Lin, Jun, Qu, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution. However, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC) method, which classifies each cell by groups of accessible regions with synergistic signal patterns termed "accessons". This python-based package greatly improves the accuracy of unsupervised single-cell clustering for many public datasets. It also predicts gene expression, identifies enriched motifs, discovers super-enhancers, and projects pseudotime trajectories. APEC is available at https://github.com/QuKunLab/APEC.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-020-02034-y