Nonintrusive Load Monitoring of Variable Speed Drive Cooling Systems

To improve the energy efficiencies of building cooling systems, manufacturers are increasingly utilizing variable speed drive (VSD) motors in system components, e.g. compressors and condensers. While these technologies can provide significant energy savings, these benefits are only realized if these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.211451-211463
Hauptverfasser: Lindahl, Peter A., Ali, Muhammad Tauha, Armstrong, Peter, Aboulian, Andre, Donnal, John, Norford, Les, Leeb, Steven B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the energy efficiencies of building cooling systems, manufacturers are increasingly utilizing variable speed drive (VSD) motors in system components, e.g. compressors and condensers. While these technologies can provide significant energy savings, these benefits are only realized if these components operate as intended and under proper control. Undetected faults can foil efficiency gains. As such, it's imperative to monitor cooling system performance to both identify faulty conditions and to properly inform building or multi-building models used for predictive control and energy management. This paper presents nonintrusive load monitoring (NILM) based "mapping" techniques for tracking the performance of a building's central air conditioning from smart electrical meter or energy monitor data. Using a multivariate linear model, a first mapping disaggregates the air conditioner's power draw from that of the total building by exploiting the correlations between the building's line-current harmonics and the power consumption of the air conditioner's VSD motors. A second mapping then estimates the air conditioner's heat rejection performance using as inputs the estimated power draw of the first mapping, the building's zonal temperature, and the outside environmental temperature. The usefulness of these mapping techniques are demonstrated using data collected from a research facility building on the Masdar City Campus of Khalifa University. The mapping techniques combine to provide accurate estimates of the building's air conditioning performance when operating under normal conditions. These estimates could thus be used as feedback in building energy management controllers and can provide a performance baseline for detection of air conditioner underperformance.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3039408