Neonatal hypoxia-ischemia in rat elicits a region-specific neurotrophic response in SVZ microglia

Recent findings describe microglia as modulators of neurogenesis in the subventricular zone (SVZ). SVZ microglia in the adult rat are thought to adopt a neurotrophic phenotype after ischemic stroke. Early postnatal microglia are endogenously activated and may therefore exhibit an increased sensitivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroinflammation 2020-01, Vol.17 (1), p.26-26, Article 26
Hauptverfasser: Fisch, Urs, Brégère, Catherine, Geier, Florian, Chicha, Laurie, Guzman, Raphael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent findings describe microglia as modulators of neurogenesis in the subventricular zone (SVZ). SVZ microglia in the adult rat are thought to adopt a neurotrophic phenotype after ischemic stroke. Early postnatal microglia are endogenously activated and may therefore exhibit an increased sensitivity to neonatal hypoxia-ischemia (HI). The goal of this study was to investigate the impact of cortico-striatal HI on the microglial phenotype, function, and gene expression in the early postnatal SVZ. Postnatal day (P)7 rats underwent sham or right-hemispheric HI surgery. Microglia in the SVZ, the uninjured cortex, and corpus callosum were immunohistochemically analyzed at P10, P20, and P40. The transcriptome of microdissected SVZ and cortical microglia was analyzed at P10 and P20, and the effect of P10 SVZ microglia on neurosphere generation in vitro was studied. The microglial response to HI was region-specific. In the SVZ, a microglial accumulation, prolonged activation and phagocytosis was noted that was not observed in the cortex and corpus callosum. The transcriptome of SVZ microglia and cortical microglia were distinct, and after HI, SVZ microglia concurrently upregulated pro- and anti-inflammatory as well as neurotrophic genes. In vitro, microglia isolated from the SVZ supported neurosphere generation in a concentration-dependent manner. Microglia are an inherent cellular component of the early postnatal SVZ and undergo developmental changes that are affected on many aspects by neonatal HI injury. Our results demonstrate that early postnatal SVZ microglia are sensitive to HI injury and display a long-lasting region-specific response including neurotrophic features.
ISSN:1742-2094
1742-2094
DOI:10.1186/s12974-020-1706-y