Transcriptome profiling of Capsicum annuum using Illumina- and PacBio SMRT-based RNA-Seq for in-depth understanding of genes involved in trichome formation
Trichomes, specialized epidermal cells located in aerial parts of plants, play indispensable roles in resisting abiotic and biotic stresses. However, the regulatory genes essential for multicellular trichrome development in Capsicum annuum L. (pepper) remain unclear. In this study, the transcript pr...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-05, Vol.11 (1), p.10164-17, Article 10164 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trichomes, specialized epidermal cells located in aerial parts of plants, play indispensable roles in resisting abiotic and biotic stresses. However, the regulatory genes essential for multicellular trichrome development in
Capsicum annuum
L. (pepper) remain unclear. In this study, the transcript profiles of peppers GZZY-23 (hairy) and PI246331 (hairless) were investigated to gain insights into the genes responsible for the formation of multicellular trichomes. A total of 40,079 genes, including 4743 novel genes and 13,568 differentially expressed genes (DEGs), were obtained. Functional enrichment analysis revealed that the most noticeable pathways were transcription factor activity, sequence-specific DNA binding, and plant hormone signal transduction, which might be critical for multicellular trichome formation in hairy plants. We screened 11 DEGs related to trichome development; 151 DEGs involved in plant hormone signal transduction; 312 DEGs belonging to the MYB, bHLH, HD-Zip, and zinc finger transcription factor families; and 1629 DEGs predicted as plant resistance genes (PRGs). Most of these DEGs were highly expressed in GZZY-23 or trichomes. Several homologs of trichome regulators, such as
SlCycB2
,
SlCycB3,
and
H
, were considerably upregulated in GZZY-23, especially in the trichomes. The transcriptomic data generated in this study provide a basis for future characterization of trichome formation in pepper. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-89619-0 |