Periodic and Nonnegative Periodic Solutions of Nonlinear Neutral Dynamic Equations on a Time Scale

Let T be a periodic time scale. We use Krasnoselskii--Burton's fixed point theorem to show new results on the existence of periodic and nonnegative periodic solutions of nonlinear neutral dynamic equation with variable delay of the form$x^{\Delta }(t)=-a(t)h(x^{\sigma }(t))+Q(t,x(t-\tau (t)))^{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of analysis and applications 2018-01, Vol.16 (2), p.162-177
Hauptverfasser: Manel Gouasmia, Abdelouaheb Ardjouni, Ahcene Djoudi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T be a periodic time scale. We use Krasnoselskii--Burton's fixed point theorem to show new results on the existence of periodic and nonnegative periodic solutions of nonlinear neutral dynamic equation with variable delay of the form$x^{\Delta }(t)=-a(t)h(x^{\sigma }(t))+Q(t,x(t-\tau (t)))^{\Delta}+G(t,x(t),x(t-\tau (t))),\text{ }t\in \mathbb{T}.$We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a completely continuous map. The Caratheodory condition is used for the functions $Q$ and $G$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [16].
ISSN:2291-8639
2291-8639
DOI:10.28924/2291-8639-16-2018-162