Periodic and Nonnegative Periodic Solutions of Nonlinear Neutral Dynamic Equations on a Time Scale
Let T be a periodic time scale. We use Krasnoselskii--Burton's fixed point theorem to show new results on the existence of periodic and nonnegative periodic solutions of nonlinear neutral dynamic equation with variable delay of the form$x^{\Delta }(t)=-a(t)h(x^{\sigma }(t))+Q(t,x(t-\tau (t)))^{...
Gespeichert in:
Veröffentlicht in: | International journal of analysis and applications 2018-01, Vol.16 (2), p.162-177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T be a periodic time scale. We use Krasnoselskii--Burton's fixed point theorem to show new results on the existence of periodic and nonnegative periodic solutions of nonlinear neutral dynamic equation with variable delay of the form$x^{\Delta }(t)=-a(t)h(x^{\sigma }(t))+Q(t,x(t-\tau (t)))^{\Delta}+G(t,x(t),x(t-\tau (t))),\text{ }t\in \mathbb{T}.$We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a completely continuous map. The Caratheodory condition is used for the functions $Q$ and $G$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [16]. |
---|---|
ISSN: | 2291-8639 2291-8639 |
DOI: | 10.28924/2291-8639-16-2018-162 |