Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data

•Sentinel-2 data were used to estimate woody cover in an extensive semi-arid area.•Only freely available data were used.•The workflow was fully implemented in open-source environment.•Our woody cover maps are notably more plausible than available global products. Woody canopy cover is an essential v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied earth observation and geoinformation 2021-12, Vol.105, p.102621, Article 102621
Hauptverfasser: Shafeian, Elham, Fassnacht, Fabian Ewald, Latifi, Hooman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Sentinel-2 data were used to estimate woody cover in an extensive semi-arid area.•Only freely available data were used.•The workflow was fully implemented in open-source environment.•Our woody cover maps are notably more plausible than available global products. Woody canopy cover is an essential variable to characterize and monitor vegetation health, carbon accumulation and land–atmosphere exchange processes. Remote sensing-based global woody and forest cover maps are available, yet with varying qualities. In arid and semi-arid areas, existing global products often underestimate the presence of woody cover due to the sparse woody cover and bright soil background. Case studies on smaller regions have shown that a combination of collected field data and medium-to-high resolution free satellite data (e.g., Landsat / Sentinel-2) can provide woody cover estimates with practically-sufficient accuracies. However, most earlier studies focused on comparably small regions and relied on costly field data. Here, we present a fully remote sensing-based work-flow to derive woody cover estimates over an area covering more than 0.5 million km2. The work-flow is showcased over the Zagros Mountains, a semi-arid mountain range covering western Iran, the northeast of Iraq and some smaller fraction of southeast Turkey. We use the Google Earth Engine to create homogeneous Sentinel-2 mosaics of the region using data from several years. These data are combined with reference woody cover values derived by a semi-automatic procedure from Google® and Bing® very high resolution (VHR) imagery. Several random forest (RF) models at different spatial grains were trained and at each grain validated with iterative splits of the reference data into training and validation sets (100 repetitions). Best results (considering the trade-off between model performance and spatial detail) were obtained for the model with 40 m spatial grain which showed stable relationships between the VHR-derived reference data and the Sentinel-2 based estimates of woody cover density. The model resulted in median values of coefficient of determination (R2) and RMSE of 0.67 and 0.11, respectively. Our work-flow is potentially also applicable to other arid and semi-arid regions and can contribute to improve currently available global woody cover products, which often perform poorly in semi-arid and arid regions. Comparisons between our woody cover products with common global woody or forest-cover products indicate
ISSN:1569-8432
1872-826X
DOI:10.1016/j.jag.2021.102621