Selective Anticancer Therapy Using Pro-Oxidant Drug-Loaded Chitosan-Fucoidan Nanoparticles
Pro-oxidant therapy exploiting pro-oxidant drugs that can trigger cytotoxic oxidative stress in cancer cells has emerged as an innovative strategy for cancer-specific therapy. Piperlongumine (PL) has gained great interest as a novel pro-oxidant agent, because it has an ability to trigger cancer-spec...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-06, Vol.20 (13), p.3220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pro-oxidant therapy exploiting pro-oxidant drugs that can trigger cytotoxic oxidative stress in cancer cells has emerged as an innovative strategy for cancer-specific therapy. Piperlongumine (PL) has gained great interest as a novel pro-oxidant agent, because it has an ability to trigger cancer-specific apoptosis through the increase of oxidative stress in cancer cells. However, the use of PL is limited in the clinic because of its hydrophobic nature. In this study, chitosan- and fucoidan-based nanoparticles were prepared for the effective intracellular delivery of PL into cancer cells. Chitosan and fucoidan formed nanoparticles by ionic gelation. The chitosan- and fucoidan-based nanoparticles (CS-F NPs) effectively encapsulated PL, and increased its water solubility and bioavailability. CS-F NPs showed very low cytotoxicity in human prostate cancer cells, demonstrating its high potential for in vivo applications. The PL-loaded chitosan-fucoidan nanoparticles (PL-CS-F NPs) efficiently killed human prostate cancer cells via PL-induced intracellular reactive oxygen species (ROS) generation. This study demonstrates that CS-F NPs are promising natural polymer-based drug carriers for safe and effective PL delivery. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms20133220 |