The SMC5/6 Complex Represses the Replicative Program of High-Risk Human Papillomavirus Type 31
The multi-subunit structural maintenance of chromosomes (SMC) 5/6 complex includes SMC6 and non-SMC element (NSE)3. SMC5/6 is essential for homologous recombination DNA repair and functions as an antiviral factor during hepatitis B (HBV) and herpes simplex-1 (HSV-1) viral infections. Intriguingly, S...
Gespeichert in:
Veröffentlicht in: | Pathogens (Basel) 2020-09, Vol.9 (10), p.786 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The multi-subunit structural maintenance of chromosomes (SMC) 5/6 complex includes SMC6 and non-SMC element (NSE)3. SMC5/6 is essential for homologous recombination DNA repair and functions as an antiviral factor during hepatitis B (HBV) and herpes simplex-1 (HSV-1) viral infections. Intriguingly, SMC5/6 has been found to associate with high-risk human papillomavirus (HPV) E2 regulatory proteins, but the functions of this interaction and its role during HPV infection remain unclear. Here, we further characterize SMC5/6 interactions with HPV-31 E2 and its role in the HPV life cycle. Co-immunoprecipitation (co-IP) revealed that SMC6 interactions with HPV-31 E2 require the E2 transactivation domain, implying that SMC5/6 interacts with full-length E2. Using chromatin immunoprecipitation, we found that SMC6 is present on HPV-31 episomes at E2 binding sites. Th depletion of SMC6 and NSE3 increased viral replication and transcription in keratinocytes maintaining episomal HPV-31, indicating that SMC5/6 restricts the viral replicative program. SMC6 interactions with E2 were reduced in the presence of HPV-31 E1, suggesting that SMC6 and E1 compete for E2 binding. Our findings demonstrate SMC5/6 functions as a repressor of the viral replicative program and this may involve inhibiting the initiation of viral replication. |
---|---|
ISSN: | 2076-0817 2076-0817 |
DOI: | 10.3390/pathogens9100786 |