Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review

The algorithms of electroencephalography (EEG) decoding are mainly based on machine learning in current research. One of the main assumptions of machine learning is that training and test data belong to the same feature space and are subject to the same probability distribution. However, this may be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (21), p.6321
Hauptverfasser: Zhang, Kai, Xu, Guanghua, Zheng, Xiaowei, Li, Huanzhong, Zhang, Sicong, Yu, Yunhui, Liang, Renghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The algorithms of electroencephalography (EEG) decoding are mainly based on machine learning in current research. One of the main assumptions of machine learning is that training and test data belong to the same feature space and are subject to the same probability distribution. However, this may be violated in EEG processing. Variations across sessions/subjects result in a deviation of the feature distribution of EEG signals in the same task, which reduces the accuracy of the decoding model for mental tasks. Recently, transfer learning (TL) has shown great potential in processing EEG signals across sessions/subjects. In this work, we reviewed 80 related published studies from 2010 to 2020 about TL application for EEG decoding. Herein, we report what kind of TL methods have been used (e.g., instance knowledge, feature representation knowledge, and model parameter knowledge), describe which types of EEG paradigms have been analyzed, and summarize the datasets that have been used to evaluate performance. Moreover, we discuss the state-of-the-art and future development of TL for EEG decoding. The results show that TL can significantly improve the performance of decoding models across subjects/sessions and can reduce the calibration time of brain-computer interface (BCI) systems. This review summarizes the current practical suggestions and performance outcomes in the hope that it will provide guidance and help for EEG research in the future.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20216321