Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells
Anoikis resistance is a critical feature involved in tumor progression and chemoresistance. Finding approaches to improve the effect of chemotherapy on anoikis-resistant cancer cells is therefore critically important. In this study, we examined the effects of curcumin in anoikis-resistant cholangioc...
Gespeichert in:
Veröffentlicht in: | Heliyon 2020-01, Vol.6 (1), p.e03255-e03255, Article e03255 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anoikis resistance is a critical feature involved in tumor progression and chemoresistance. Finding approaches to improve the effect of chemotherapy on anoikis-resistant cancer cells is therefore critically important. In this study, we examined the effects of curcumin in anoikis-resistant cholangiocarcinoma (CCA) cells, including HuCCT1 and TFK-1 that were anchorage-independently cultured (AI-cells) using poly (2-hydroxyethyl methacrylate). The AI-CCA cells were treated with curcumin alone or in combination with anti-cancer agents and their responses to each treatment were determined by cell viability assay. Gene expression in AI-cells was determined by quantitative real-time PCR. The potential involvement of angiopoietin-like 4 (ANGPTL4) in anoikis resistance was examined by gene knockdown. It was found that AI-cells tended to resist anti-cancer agents tested, especially AI-HuCCT1, which significantly resisted gemcitabine and suberoylanilide hydroxamic acid (SAHA). Curcumin alone significantly inhibited viability and colony formation of AI-cells. Moreover, curcumin combination significantly enhanced the treatment effect of SAHA on AI-HuCCT1 and AI-TFK-1 cells. Gene expression analysis revealed that ANGPTL4 was markedly upregulated in AI-CCA cells and its knockdown tended to sensitize AI-cells to cell death and treatments. In addition, curcumin treatment decreased phosphorylated STAT3 and expression levels of Mcl-1, HDACs and ANGPTL4. Altogether, these findings reveal the beneficial property of curcumin to potentiate chemotherapeutic effects on anoikis-resistant CCA cells, which might suggest the potential use of curcumin for cancer treatment.
Molecular biology; Cancer research; Natural product. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2020.e03255 |