Kaleidoscopic Colorings of Graphs
For an -regular graph , let : ) → [ ] = {1, 2, . . . , }, ≥ 3, be an edge coloring of , where every vertex of is incident with at least one edge of each color. For a vertex of , the multiset-color ) of is defined as the ordered -tuple ( , , . . . , ) or … , where (1 ≤ ≤ ) is the number of edges in c...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2017-08, Vol.37 (3), p.711-727 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an
-regular graph
, let
:
) → [
] = {1, 2, . . . ,
},
≥ 3, be an edge coloring of
, where every vertex of
is incident with at least one edge of each color. For a vertex
of
, the multiset-color
) of
is defined as the ordered
-tuple (
,
, . . . ,
) or
…
, where
(1 ≤
≤
) is the number of edges in
colored
that are incident with
. The edge coloring
is called
-kaleidoscopic if
) ≠
) for every two distinct vertices
and
of
. A regular graph
is called a
-kaleidoscope if
has a
-kaleidoscopic coloring. It is shown that for each integer
≥ 3, the complete graph
is a
-kaleidoscope and the complete graph
is a 3-kaleidoscope for each integer
≥ 6. The largest order of an
-regular 3-kaleidoscope is
. It is shown that for each integer
≥ 5 such that
≢ 3 (mod 4), there exists an
-regular 3-kaleidoscope of order
. |
---|---|
ISSN: | 1234-3099 2083-5892 |
DOI: | 10.7151/dmgt.1950 |