Quantifying the Dynamic Stability of Gait Patterns in People with Hallux Valgus

Hallux valgus (HV), which is mainly caused by the wearing of narrow-width and high-heeled shoes, disrupts gait behavior because it deforms lower limb joints. There is limited information regarding the relationship between the foot disease HV and lower limb joints. Previous studies evaluating abnorma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied bionics and biomechanics 2021-05, Vol.2021, p.1-7
Hauptverfasser: Park, Chaneun, Kang, Nyeonju, Jeon, KyoungKyu, Park, Kiwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hallux valgus (HV), which is mainly caused by the wearing of narrow-width and high-heeled shoes, disrupts gait behavior because it deforms lower limb joints. There is limited information regarding the relationship between the foot disease HV and lower limb joints. Previous studies evaluating abnormal gait patterns caused by deformity used spatiotemporal parameters; however, they failed to characterize the overall gait dynamics. To address this issue, this study is aimed at characterizing the gait stability of patients with HV and examining the joints that are critically affected by HV. To assess complex gait dynamics, we quantified the potential changes in gait stability by using the maximum Lyapunov exponent (MLE). Angular displacements of the ankle, knee, and hip in the sagittal plane during walking were investigated to calculate the MLE for gait stability based on foot conditions (i.e., barefoot, flat shoes, and high heels). During walking, a large MLE (P
ISSN:1176-2322
1754-2103
DOI:10.1155/2021/5543704