INDMF Based Regularity Calculation Method and Its Application in the Recognition of Typical Loess Landforms

The topographical morphology of the loess landform on the Loess Plateau exhibits remarkable textural features at different spatial scales. However, existing topographic texture analysis studies on the Loess Plateau are usually dominated by statistical characteristics and are missing structural chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-05, Vol.14 (9), p.2282
Hauptverfasser: Jiang, Sheng, Huang, Xiaoli, Jiang, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The topographical morphology of the loess landform on the Loess Plateau exhibits remarkable textural features at different spatial scales. However, existing topographic texture analysis studies on the Loess Plateau are usually dominated by statistical characteristics and are missing structural characteristics. At the same time, there is a lack of regularity calculation methods for DEM digital terrain analysis. Taking the Loess Plateau as the study area, a regularity calculation method based on the improved normalized distance matching function (INDMF) is proposed and applied to the classification of a loess landform. The regularity calculation method used in this study (INDMF regularity) mainly includes two key steps. Step 1 calculates the INDMF sequence value and the peak and valley values for the terrain data. Step 2 calculates the significant peak and valley, constructs the significant peak and valley sequences, and then obtains the regularity using the normalised ratio value. The experimental results show that the proposed method has good anti-interference ability and can effectively extract the regularity of the main landform unit. Compared with previous methods, adding structural features (i.e., INDMF regularity) can effectively distinguish loess hill and loess ridge in the hilly and gully region. For the loess hill and loess ridge, the recognition rates of the proposed method are 84.62% and 92.86%, respectively. Combined with the existing topographic characteristics, the proposed INDMF regularity is a topographic structure feature extraction method that can effectively discriminate between loess hill and loess ridge areas on the Loess Plateau.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14092282