Information Bottleneck Analysis by a Conditional Mutual Information Bound
Task-nuisance decomposition describes why the information bottleneck loss I(z;x)−βI(z;y) is a suitable objective for supervised learning. The true category y is predicted for input x using latent variables z. When n is a nuisance independent from y, I(z;n) can be decreased by reducing I(z;x) since t...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2021-07, Vol.23 (8), p.974 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Task-nuisance decomposition describes why the information bottleneck loss I(z;x)−βI(z;y) is a suitable objective for supervised learning. The true category y is predicted for input x using latent variables z. When n is a nuisance independent from y, I(z;n) can be decreased by reducing I(z;x) since the latter upper bounds the former. We extend this framework by demonstrating that conditional mutual information I(z;x|y) provides an alternative upper bound for I(z;n). This bound is applicable even if z is not a sufficient representation of x, that is, I(z;y)≠I(x;y). We used mutual information neural estimation (MINE) to estimate I(z;x|y). Experiments demonstrated that I(z;x|y) is smaller than I(z;x) for layers closer to the input, matching the claim that the former is a tighter bound than the latter. Because of this difference, the information plane differs when I(z;x|y) is used instead of I(z;x). |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e23080974 |