Livestock detection in aerial images using a fully convolutional network

In order to accurately count the number of animals grazing on grassland, we present a livestock detection algorithm using modified versions of U-net and Google Inception-v4 net. This method works well to detect dense and touching instances. We also introduce a dataset for livestock detection in aeri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Visual Media 2019-06, Vol.5 (2), p.221-228
Hauptverfasser: Han, Liang, Tao, Pin, Martin, Ralph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to accurately count the number of animals grazing on grassland, we present a livestock detection algorithm using modified versions of U-net and Google Inception-v4 net. This method works well to detect dense and touching instances. We also introduce a dataset for livestock detection in aerial images, consisting of 89 aerial images collected by quadcopter. Each image has resolution of about 3000×4000 pixels, and contains livestock with varying shapes, scales, and orientations. We evaluate our method by comparison against Faster RCNN and Yolo-v3 algorithms using our aerial livestock dataset. The average precision of our method is better than Yolo-v3 and is comparable to Faster RCNN.
ISSN:2096-0433
2096-0662
DOI:10.1007/s41095-019-0132-5