Distributed quantum sensing enhanced by continuous-variable error correction

A distributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the network, such as a weighted average of locally detectable parameters. In the noiseless case, continuous-variable (CV) multipartite entanglement shared by the nodes can improve the precision of pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-02, Vol.22 (2), p.22001
Hauptverfasser: Zhuang, Quntao, Preskill, John, Jiang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A distributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the network, such as a weighted average of locally detectable parameters. In the noiseless case, continuous-variable (CV) multipartite entanglement shared by the nodes can improve the precision of parameter estimation relative to the precision attainable by a network without shared entanglement; for an entangled protocol, the root mean square estimation error scales like 1/M with the number M of sensing nodes, the so-called Heisenberg scaling, while for protocols without entanglement, the error scales like 1 M . However, in the presence of loss and other noise sources, although multipartite entanglement still has some advantages for sensing displacements and phases, the scaling of the precision with M is less favorable. In this paper, we show that using CV error correction codes can enhance the robustness of sensing protocols against imperfections and reinstate Heisenberg scaling up to moderate values of M. Furthermore, while previous distributed sensing protocols could measure only a single quadrature, we construct a protocol in which both quadratures can be sensed simultaneously. Our work demonstrates the value of CV error correction codes in realistic sensing scenarios.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ab7257