Infectivity-Enhanced, Conditionally Replicative Adenovirus for COX-2-Expressing Castration-Resistant Prostate Cancer

The development of conditionally replicative adenoviruses (CRAds) for castration-resistant prostate cancer (CRPC), particularly neuroendocrine prostate cancer (NEPC), has two major obstacles: choice of control element and poor infectivity. We applied fiber-modification-based infectivity enhancement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Viruses 2023-03, Vol.15 (4), p.901
Hauptverfasser: Gavrikova, Tatyana, Nakamura, Naohiko, Davydova, Julia, Antonarakis, Emmanuel S, Yamamoto, Masato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of conditionally replicative adenoviruses (CRAds) for castration-resistant prostate cancer (CRPC), particularly neuroendocrine prostate cancer (NEPC), has two major obstacles: choice of control element and poor infectivity. We applied fiber-modification-based infectivity enhancement and an androgen-independent promoter (cyclooxynegase-2, COX-2) to overcome these issues. The properties of the COX-2 promoter and the effect of fiber modification were tested in two CRPC cell lines (Du-145 and PC3). Fiber-modified COX-2 CRAds were tested in vitro for cytocidal effect as well as in vivo for antitumor effect with subcutaneous CRPC xenografts. In both CRPC cell lines, the COX-2 promoter showed high activity, and Ad5/Ad3 fiber modification significantly enhanced adenoviral infectivity. COX-2 CRAds showed a potent cytocidal effect in CRPC cells with remarkable augmentation by fiber modification. In vivo, COX-2 CRAds showed an antitumor effect in Du-145 while only Ad5/Ad3 CRAd showed the strongest antitumor effect in PC3. COX-2 promoter-based, infectivity-enhanced CRAds showed a potent antitumor effect in CRPC/NEPC cells.
ISSN:1999-4915
1999-4915
DOI:10.3390/v15040901