Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field
The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF) on cellular and biochemical properties of during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC) production intensified the biochemical processe...
Gespeichert in:
Veröffentlicht in: | Polish journal of chemical technology 2017-06, Vol.19 (2), p.107-114 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF) on cellular and biochemical properties of
during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC) production intensified the biochemical processes in
as compared to the RMF-unexposed cultures. Moreover, the RMF had a positive impact on the growth of cellulose-producing bacteria. Furthermore, the application of RMF did not increase the number of mutants unable to produce cellulose. In terms of BC production efficacy, the most favorable properties were found in the setting where RMF generator was switched off for the first 72 h of cultivation and switched on for the further 72 h. The results obtained can be used in subsequent studies concerning the optimization of BC production using different types of magnetic fields including RMF, especially. |
---|---|
ISSN: | 1899-4741 1509-8117 1899-4741 |
DOI: | 10.1515/pjct-2017-0036 |