The Potential of 24-Propylcholestrol as Antibacterial Oral Bacteria of Enterococcus faecalis ATCC 29212 and Inhibitor Biofilms Formation: in vitro and in silico Study

Uncontrolled biofilm can cause several diseases such as dental caries, gingivitis, and periodontitis. Dental caries is a disease caused by the accumulation of plaque-containing pathogenic bacteria, including . These bacteria infect the root canals of teeth and colonize to form biofilms. Biofilm inhi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances and applications in bioinformatics and chemistry 2022-12, Vol.15, p.99-111
Hauptverfasser: Windaryanti, Devi, Gabriel, Christine Sondang, Hidayat, Ika Wiani, Zainuddin, Achmad, Dharsono, Hendra Dian Adhita, Satari, Mieke Hemiawati, Kurnia, Dikdik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncontrolled biofilm can cause several diseases such as dental caries, gingivitis, and periodontitis. Dental caries is a disease caused by the accumulation of plaque-containing pathogenic bacteria, including . These bacteria infect the root canals of teeth and colonize to form biofilms. Biofilm inhibition is carried out by interfering with cell wall formation metabolism. MurA enzyme has a role in peptidoglycan biosynthesis of cell walls. Enterococcal surface protein (Esp) is the main contributor of to form biofilms. In addition, inhibition of biofilms by interfering with the quorum sensing (QS) system, suppressing gelatinase virulence factors by blocking autoinducers gelatinase biosynthesis-activating pheromone (GBAP). Knowing the potential of Linn. compounds as antibacterial in vitro and antibiofilm agents against in silico. The compounds were purified by a bioactivity-guided chromatographic method. Antibacterial activity was tested by disc diffusion method, in vitro studies. In silico study, compound L. was used as the test ligand and compared with positive control fosfomycin, ambuic acid, quercetin, and taxifolin. The proteins used MurA, Esp, GBAP, and gelatinase were docking with the Autodock Vina PyRx 0.8 followed by the PYMOL program and visualized with the Discovery Studio 2020 program. An antibacterial compound was identified 24-propylcholesterol which can inhibit the activity of ATCC 29212 with MIC value of 78.1 µg/mL and MBC value of 156.3 µg/mL. Molecular docking results showed the binding affinity of 24-propylcholesterol with MurA, ESP, GBAP, and gelatinase enzymes was -7.6, -8.7, -5.3, and -7.9 kcal/mol. 24-propylcholesterol has potential as an antibacterial against and as an antibiofilm through in silico inhibition of QS. However, further research is needed in vitro and in vivo to determine the effectiveness of these compounds as antibacterial and antibiofilm.
ISSN:1178-6949
1178-6949
DOI:10.2147/AABC.S372337