Geometry of curve flows in isotropic spaces
In this paper, we study inextensible flows of a curve in an isotropic 3-space and give a necessary and sufficient condition for inextensible flows of the curve as a partial differential equation involving the curvatures of the curve. Using binormal flows of a space curve we give the Backlund transfo...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2020-01, Vol.5 (4), p.3434-3445 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study inextensible flows of a curve in an isotropic 3-space and give a necessary and sufficient condition for inextensible flows of the curve as a partial differential equation involving the curvatures of the curve. Using binormal flows of a space curve we give the Backlund transformations of the Schrodinger flows and the extended Harry-Dym flows. Finally, we investigate some geometric properties of Hasimoto surfaces which wiped out by the Schrodinger flows. Keywords: Hasimoto surface; Schrodinger flow; extended Harry-Dym flow; isotropic space Mathematics Subject Classification: 53B30, 53C40, 53Z05 |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020222 |