Averaged Soft Actor-Critic for Deep Reinforcement Learning

With the advent of the era of artificial intelligence, deep reinforcement learning (DRL) has achieved unprecedented success in high-dimensional and large-scale artificial intelligence tasks. However, the insecurity and instability of the DRL algorithm have an important impact on its performance. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Ding, Feng, Ma, Guanfeng, Chen, Zhikui, Gao, Jing, Li, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of the era of artificial intelligence, deep reinforcement learning (DRL) has achieved unprecedented success in high-dimensional and large-scale artificial intelligence tasks. However, the insecurity and instability of the DRL algorithm have an important impact on its performance. The Soft Actor-Critic (SAC) algorithm uses advanced functions to update the policy and value network to alleviate some of these problems. However, SAC still has some problems. In order to reduce the error caused by the overestimation of SAC, we propose a new SAC algorithm called Averaged-SAC. By averaging the previously learned action-state estimates, it reduces the overestimation problem of soft Q-learning, thereby contributing to a more stable training process and improving performance. We evaluate the performance of Averaged-SAC through some games in the MuJoCo environment. The experimental results show that the Averaged-SAC algorithm effectively improves the performance of the SAC algorithm and the stability of the training process.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6658724