TFscope: systematic analysis of the sequence features involved in the binding preferences of transcription factors
Characterizing the binding preferences of transcription factors (TFs) in different cell types and conditions is key to understand how they orchestrate gene expression. Here, we develop TFscope, a machine learning approach that identifies sequence features explaining the binding differences observed...
Gespeichert in:
Veröffentlicht in: | Genome Biology 2024-07, Vol.25 (1), p.187-28, Article 187 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Characterizing the binding preferences of transcription factors (TFs) in different cell types and conditions is key to understand how they orchestrate gene expression. Here, we develop TFscope, a machine learning approach that identifies sequence features explaining the binding differences observed between two ChIP-seq experiments targeting either the same TF in two conditions or two TFs with similar motifs (paralogous TFs). TFscope systematically investigates differences in the core motif, nucleotide environment and co-factor motifs, and provides the contribution of each key feature in the two experiments. TFscope was applied to > 305 ChIP-seq pairs, and several examples are discussed. |
---|---|
ISSN: | 1474-760X 1474-7596 1465-6906 1474-760X |
DOI: | 10.1186/s13059-024-03321-8 |