Fabrication of Mesoporous PtO–ZnO Nanocomposites with Promoted Photocatalytic Performance for Degradation of Tetracycline

Herein, we report a simple incorporation of PtO NPs at diverse percentages (0.2–0.8 wt %) onto a highly crystalline and mesoporous ZnO matrix by the wet-impregnation approach for degradation of tetracycline (TC) upon visible light exposure. These well-dispersed and small-sized PtO NPs provide the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2021-03, Vol.6 (9), p.6438-6447
Hauptverfasser: Mohamed, Reda M, Ismail, Adel A, Kadi, Mohammad W, Alresheedi, Ajayb S, Mkhalid, Ibraheem A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we report a simple incorporation of PtO NPs at diverse percentages (0.2–0.8 wt %) onto a highly crystalline and mesoporous ZnO matrix by the wet-impregnation approach for degradation of tetracycline (TC) upon visible light exposure. These well-dispersed and small-sized PtO NPs provide the mesoporous PtO–ZnO nanocomposites with outstanding photocatalytic performance for complete TC degradation. The optimized 0.6% PtO–ZnO photocatalyst exhibits excellent TC degradation, and its degradation efficiency reached ∼99% within 120 min. The photocatalytic performance of the 0.6% PtO–ZnO nanocomposite is 20 and 10 times higher than that of pristine ZnO and commercial P-25, respectively. The photodegradation rate of TC over the 0.6% PtO–ZnO nanocomposite is 34 and 12.5 times greater than that of pristine ZnO and commercial P-25, respectively. This is because of the large surface area, unique porous structure, synergistic effect, and broad visible light absorption of the PtO–ZnO nanocomposite. Moreover, mesoporous PtO–ZnO nanocomposites showed a high stability and recyclability over five iterations. This work demonstrates the remarkable role of combining PtO and ZnO photocatalysts in providing nanocomposites with significant potential for the preservation of human health through wastewater remediation.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c00135