Microfluidic system for enhanced cardiac tissue formation
Hereby a microfluidic system for cell cultivation is presented in which human pluripotent stem cell-derived cardiomyocytes were cultivated under perfusion. Besides micro-perfusion this system is also capable to produce well-defined oxygen contents, apply defined forces and has excellent imaging char...
Gespeichert in:
Veröffentlicht in: | Current directions in biomedical engineering 2017-09, Vol.3 (2), p.367-370 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hereby a microfluidic system for cell cultivation is presented in which human pluripotent stem cell-derived cardiomyocytes were cultivated under perfusion. Besides micro-perfusion this system is also capable to produce well-defined oxygen contents, apply defined forces and has excellent imaging characteristics. Cardiomyocytes attach to the surface, start spontaneous beating and stay functional for up to 14 days under perfusion. The cell motion was subsequently analysed using an adapted video analysis script to calculate beating rate, beating direction and contraction or relaxation speed. |
---|---|
ISSN: | 2364-5504 2364-5504 |
DOI: | 10.1515/cdbme-2017-0076 |