BUILDING A 3D REFERENCE MODEL FOR CANAL TUNNEL SURVEYING USING SONAR AND LASER SCANNING

Maintaining canal tunnels is not only a matter of cultural and historical preservation, but also a commercial necessity and a security issue. This contribution adresses the problem of building a full 3D reference model of a canal tunnel by merging SONAR (for underwater data recording) and LASER data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moisan, E., Charbonnier, P., Foucher, P., Grussenmeyer, P., Guillemin, S., Koehl, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintaining canal tunnels is not only a matter of cultural and historical preservation, but also a commercial necessity and a security issue. This contribution adresses the problem of building a full 3D reference model of a canal tunnel by merging SONAR (for underwater data recording) and LASER data (for the above-water parts). Although both scanning devices produce point clouds, their properties are rather different. In particular, SONAR data are very noisy and their processing raises several issues related to the device capacities, the acquisition setup and the tubular shape of the tunnel. The proposed methodology relies on a denoising step by meshing, followed by the registration of SONAR data with the geo-referenced LASER data. Since there is no overlap between point clouds, a 3-step procedure is proposed to robustly estimate the registration parameters. In this paper, we report a first experimental survey, which concerned the entrance of a canal tunnel. The obtained results are promising and the analysis of the method raises several improvement directions that will help obtaining more accurate models, in a more automated fashion, in the limits of the involved technology.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprsarchives-XL-5-W5-153-2015