Acyclic Chromatic Index of 1-Planar Graphs
The acyclic chromatic index χa′(G) of a graph G is the smallest k for which G is a proper edge colorable using k colors. A 1-planar graph is a graph that can be drawn in plane such that every edge is crossed by at most one other edge. In this paper, we prove that every 1-planar graph G has χa′(G)≤Δ+...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-08, Vol.10 (15), p.2787 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The acyclic chromatic index χa′(G) of a graph G is the smallest k for which G is a proper edge colorable using k colors. A 1-planar graph is a graph that can be drawn in plane such that every edge is crossed by at most one other edge. In this paper, we prove that every 1-planar graph G has χa′(G)≤Δ+36, where Δ denotes the maximum degree of G. This strengthens a result that if G is a triangle-free 1-planar graph, then χa′(G)≤Δ+16. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10152787 |