Acyclic Chromatic Index of 1-Planar Graphs

The acyclic chromatic index χa′(G) of a graph G is the smallest k for which G is a proper edge colorable using k colors. A 1-planar graph is a graph that can be drawn in plane such that every edge is crossed by at most one other edge. In this paper, we prove that every 1-planar graph G has χa′(G)≤Δ+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-08, Vol.10 (15), p.2787
Hauptverfasser: Yang, Wanshun, Wang, Yiqiao, Wang, Weifan, Liu, Juan, Finbow, Stephen, Wang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The acyclic chromatic index χa′(G) of a graph G is the smallest k for which G is a proper edge colorable using k colors. A 1-planar graph is a graph that can be drawn in plane such that every edge is crossed by at most one other edge. In this paper, we prove that every 1-planar graph G has χa′(G)≤Δ+36, where Δ denotes the maximum degree of G. This strengthens a result that if G is a triangle-free 1-planar graph, then χa′(G)≤Δ+16.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10152787