Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study

We investigated nano-structural changes of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate-an ionic liquid (IL)-using a small angle X-ray scattering (SAXS) technique over the entire concentration range (0-100 mol %). Fibril structures of cellulose disappeared at 40 mol % of cellulose, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2017-01, Vol.22 (1), p.178-178
Hauptverfasser: Endo, Takatsugu, Hosomi, Shota, Fujii, Shunsuke, Ninomiya, Kazuaki, Takahashi, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated nano-structural changes of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate-an ionic liquid (IL)-using a small angle X-ray scattering (SAXS) technique over the entire concentration range (0-100 mol %). Fibril structures of cellulose disappeared at 40 mol % of cellulose, which is a significantly higher concentration than the maximum concentration of dissolution (24-28 mol %) previously determined in this IL. This behavior is explained by the presence of the anion bridging, whereby an anion prefers to interact with multiple OH groups of different cellulose molecules at high concentrations, discovered in our recent work. Furthermore, we observed the emergence of two aggregated nano-structures in the concentration range of 30-80 mol %. The diameter of one structure was 12-20 nm, dependent on concentration, which is ascribed to cellulose chain entanglement. In contrast, the other with 4.1 nm diameter exhibited concentration independence and is reminiscent of a cellulose microfibril, reflecting the occurrence of nanofibrillation. These results contribute to an understanding of the dissolution mechanism of cellulose in ILs. Finally, we unexpectedly proposed a novel cellulose/IL composite: the cellulose/IL mixtures of 30-50 mol % that possess liquid crystallinity are sufficiently hard to be moldable.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22010178