Nitrogen and potassium limit fine root growth in a humid Afrotropical forest

Nutrient limitations play a key regulatory role in plant growth, thereby affecting ecosystem productivity and carbon uptake. Experimental observations identifying the most limiting nutrients are lacking, particularly in Afrotropical forests. We conducted an ecosystem-scale, full factorial nitrogen (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-06, Vol.14 (1), p.13154-11, Article 13154
Hauptverfasser: Manu, Raphael, Veldkamp, Edzo, Eryenyu, David, Corre, Marife D., van Straaten, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nutrient limitations play a key regulatory role in plant growth, thereby affecting ecosystem productivity and carbon uptake. Experimental observations identifying the most limiting nutrients are lacking, particularly in Afrotropical forests. We conducted an ecosystem-scale, full factorial nitrogen (N)-phosphorus (P)-potassium (K) addition experiment consisting 32 40 × 40 m plots (eight treatments × four replicates) in Uganda to investigate which (if any) nutrient limits fine root growth. After two years of observations, added N rapidly decreased fine root biomass by up to 36% in the first and second years of the experiment. Added K decreased fine root biomass by 27% and fine root production by 30% in the second year. These rapid reductions in fine root growth highlight a scaled-back carbon investment in the costly maintenance of large fine root network as N and K limitations become alleviated. No fine root growth response to P addition was observed. Fine root turnover rate was not significantly affected by nutrient additions but tended to be higher in N added than non-N added treatments. These results suggest that N and K availability may restrict the ecosystem’s capacity for CO 2 assimilation, with implications for ecosystem productivity and resilience to climate change.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-63684-7