Synthesis and characterization of flame retardant unsaturated polyester-allyloxysilane resin for wood coatings
Fireproof coatings are the simplest, most efficient, and oldest method for protecting a wide range of flammable products, such as wood. Furthermore, surface ignition is the initial phase, so surface protection is essential to reduce fire propagation. Furthermore, delaying the spread of flames can he...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-06, Vol.14 (1), p.13410-15, Article 13410 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fireproof coatings are the simplest, most efficient, and oldest method for protecting a wide range of flammable products, such as wood. Furthermore, surface ignition is the initial phase, so surface protection is essential to reduce fire propagation. Furthermore, delaying the spread of flames can help to save someone when a fire starts. This project synthesized flame-resistant resin starting from tetraallyloxysilane monomer as a halogen-free monomer, an intrinsic flame retardant co-curing agent. The following step synthesized polyester resin using terephthalic acid as a heat-resistant resin. Unsaturated polyester was used by bulk radical polymerization. FT-IR and
1
H-NMR analysis showed the successful synthesis of the desired monomer and polymeric compound. The thermal degradation and flame retardancy of pure unsaturated polyester resin (UPE) and allyloxysilane-unsaturated polyester (AUPE) were investigated by thermogravimetric analysis (TGA/DTG/DSC). The burning test and the thermal stability of the coating layers were evaluated using standard UL 94. Physical properties of resins were evaluated using Heat Deflection Temp tests (HDT) ISO 75-A, ASTM 648, Hardness ASTM D2583, Volumetric shrinkage ASTM 3521, and Water absorption ASTM D570. The results of the tests show the successful synthesis and their flame retardant properties. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-62765-x |