Supervised Learning Perspective in Logic Mining

Creating optimal logic mining is strongly dependent on how the learning data are structured. Without optimal data structure, intelligence systems integrated into logic mining, such as an artificial neural network, tend to converge to suboptimal solution. This paper proposed a novel logic mining that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-03, Vol.10 (6), p.915
Hauptverfasser: Kasihmuddin, Mohd Shareduwan Mohd, Jamaludin, Siti Zulaikha Mohd, Mansor, Mohd. Asyraf, Wahab, Habibah A., Ghadzi, Siti Maisharah Sheikh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Creating optimal logic mining is strongly dependent on how the learning data are structured. Without optimal data structure, intelligence systems integrated into logic mining, such as an artificial neural network, tend to converge to suboptimal solution. This paper proposed a novel logic mining that integrates supervised learning via association analysis to identify the most optimal arrangement with respect to the given logical rule. By utilizing Hopfield neural network as an associative memory to store information of the logical rule, the optimal logical rule from the correlation analysis will be learned and the corresponding optimal induced logical rule can be obtained. In other words, the optimal logical rule increases the chances for the logic mining to locate the optimal induced logic that generalize the datasets. The proposed work is extensively tested on a variety of benchmark datasets with various performance metrics. Based on the experimental results, the proposed supervised logic mining demonstrated superiority and the least competitiveness compared to the existing method.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060915