Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation

Multi-product formulas (MPFs) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2024-09, Vol.6 (3), p.033309, Article 033309
Hauptverfasser: Zhuk, Sergiy, Robertson, Niall F., Bravyi, Sergey
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-product formulas (MPFs) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs [A. M. Childs , ] to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error in 1-norm (nuclear norm) on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Second, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. We use a minimax estimation method to make dynamic multi-product formulas robust to uncertainty from algorithmic errors, sampling, and hardware noise. We call this method the minimax MPF and we provide a rigorous bound on its error.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.6.033309