Scalable electrospinning using a desktop, high throughput, self-contained system
Electrospinning is a specialized processing technique for the formation of submicron diameter fibers of polymeric and ceramic materials using an electrostatic field. The process has multiple advantages over other nano- and micro- fiber synthesis methods; however, generally suffers from very low fabr...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-10, Vol.14 (1), p.25844-10, Article 25844 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrospinning is a specialized processing technique for the formation of submicron diameter fibers of polymeric and ceramic materials using an electrostatic field. The process has multiple advantages over other nano- and micro- fiber synthesis methods; however, generally suffers from very low fabrication speeds, making it undesirable for scalability. This work assesses the performance of a needle-less, self-contained, high throughput electrospinning system. It further compares the fiber fabrication rates obtained versus two single needle setups with different collectors: (i) a conventional single needle and flat plate geometry, and (ii) a single needle with a rotating collector geometry. Polyvinylpyrrolidone (PVP) in ethanol was used as the model material. The fabrication rate of the high throughput system “HTES” was measured at about 2.6 g/h and was about 15 times that collected of the flat plate. Comparing it to other systems reported in the literature also proved it to be a viable option for high throughput, lab scale electrospinning. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-76766-3 |