Soil Biodegradation of PLA/CNW Nanocomposites Modified with Ethylene Oxide Derivatives

Due to its ester bonds, poly(lactic acid) (PLA) undergoes biodegradation in humid environments, attracting market attention. The goal of this work was to observe the biodegradation in garden soil of PLA nanocomposites with neat (PLA/CNW) and surfactant modified cellulose nanowhiskers (PLA/CNW/S). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2017-01, Vol.20 (suppl 2), p.899-904
Hauptverfasser: Gois, Gelsoneide da Silva, Andrade, Michelle Félix de, Garcia, Sônia Maria Silva, Vinhas, Glória Maria, Santos, Amélia S. F., Medeiros, Eliton S., Oliveira, Juliano E., Almeida, Yêda Medeiros Bastos de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to its ester bonds, poly(lactic acid) (PLA) undergoes biodegradation in humid environments, attracting market attention. The goal of this work was to observe the biodegradation in garden soil of PLA nanocomposites with neat (PLA/CNW) and surfactant modified cellulose nanowhiskers (PLA/CNW/S). Three types of surfactants were tested: poly(ethylene glycol) monooleate (PEGMONO) and poly(ethylene glycol) with molecular weight of 300 and 1000 Da. The films were obtained by solution casting, cut in strips of (2x2) cm and buried in garden soil, monitoring the temperature and humidity. After 90, 120 and 150 days changes were observed in the films by visual inspection, polarized light microscopy, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The results showed that the addition of surfactant favored the biodegradation of nanocomposites and that PLA/CNW/PEG1000 showed the fastest biodegradation rate.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2016-0960