Effect of Coiling Temperature on Microstructure and Properties of Titanium Strengthened Weathering Building Steel
For weathering steel used in building, it is necessary not only to ensure weather resistance, but also to improve the strength and yield ratio. This study investigates the strengthening effect of Ti microalloying on the tested steel by conducting continuous cooling transformation tests of undercoole...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2023-04, Vol.13 (4), p.804 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For weathering steel used in building, it is necessary not only to ensure weather resistance, but also to improve the strength and yield ratio. This study investigates the strengthening effect of Ti microalloying on the tested steel by conducting continuous cooling transformation tests of undercooled austenite and comparative tests of microstructure and performance at different coiling temperatures, with 0.07 wt.% Ti added to the weathering building test steel. The results show that, with an increase in cooling rate (0.1~50 °C/s), the room temperature microstructure of different cooling rates gradually transitions as follows: F + P, F + P + B, F + B and B + M; in addition, the hardness increases. Polygonal ferrite and pearlite were obtained by coiling at 650 °C; quasi-polygonal ferrite, acicular ferrite, pearlite and a small amount of bainite were obtained by coiling at 600 °C; and bainite was obtained by coiling at 550 °C. With a decrease in coiling temperature, the strength of the test steel increased, the yield ratio increased, the elongation after fracture decreased and the elongation at the yield point decreased. Compared with those observed at 650 °C, the nano precipitation phases observed in the sample at 600 °C were smaller in size, higher in number and higher in dislocation density. The combined action of second-phase precipitation strengthening and dislocation strengthening increased the strength and yield ratio of the test steel. This study will be helpful in guiding the improvement of strength grades for weathering steel used in building and industrial production. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met13040804 |