Properties of Novel High Temperature Titanium Alloys for Aerospace Applications
The attractive combination of strength and low density has resulted in titanium alloys covering 15 to 25% of the weight of a modern jet engine, with titanium currently being used in fan, compressor and nozzle components. Typically, titanium alloys used in jet engine applications are selected from th...
Gespeichert in:
Veröffentlicht in: | MATEC web of conferences 2020, Vol.321, p.4006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The attractive combination of strength and low density has resulted in titanium alloys covering 15 to 25% of the weight of a modern jet engine, with titanium currently being used in fan, compressor and nozzle components. Typically, titanium alloys used in jet engine applications are selected from the group of near alpha and alpha-beta titanium alloys, which exhibit superior elevated temperature strength, creep resistance and fatigue life compared to typical titanium alloys such as Ti-6Al-4V. Legacy titanium alloys for elevated temperature jet engine applications include Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-4Zr-2Mo-0.1Si and Ti-4Al-4Mo-2Sn-0.5Si. Improving the mechanical behavior of these alloys enables improved component performance, which is crucial to advancing jet engine performance.
As a world leader in supplying advanced alloys of titanium, nickel, cobalt, and specialty stainless steels, ATI is developing new titanium alloys with improved elevated temperature properties. These improved properties derive from precipitation of secondary intermetallics in alpha-beta titanium alloys. ATI has developed several new alpha-beta titanium alloy compositions which exhibit significantly improved elevated temperature strength and creep resistance. This paper will focus on the effects of chemistry and heat treat conditions on the microstructure and resulting elevated temperature properties of these new aerospace titanium alloys. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/202032104006 |