DEVELOPMENT OF 3D PIN-BY-PIN CORE SOLVER TORTIN AND COUPLING WITH THERMAL-HYDRAULICS
Currently, safety analyses mostly rely on codes which solve both the neutronics and the thermal-hydraulics with assembly-wise nodes resolution as multiphysics heterogeneous transport solvers are still too time and memory expensive. The pin-by-pin homogenized codes can be seen as a bridge between the...
Gespeichert in:
Veröffentlicht in: | EPJ Web of conferences 2021-01, Vol.247, p.2034 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Currently, safety analyses mostly rely on codes which solve both the neutronics and the thermal-hydraulics with assembly-wise nodes resolution as multiphysics heterogeneous transport solvers are still too time and memory expensive. The pin-by-pin homogenized codes can be seen as a bridge between the heterogeneous codes and the traditional nodal assembly-wise calculations. In this work, the pin-by-pin simplified transport solver Tortin has been coupled with a sub-channel code COBRA-TF. The verification of the 3D solver of Tortin is presented at first, showing very good agreement in terms of axial and radial power profile with the Monte Carlo code SERPENT for a small minicore and with the state-of-the-art nodal code SIMULATE5 for a quarter core without feedback. Then the results of Tortin+COBRA-TF are compared with SIMULATE5 for one assembly problem with feedback. The axial profiles of power and moderator temperature show good agreement, while the fuel temperature differ by up to 40 K. This is caused mainly by different gap and fuel conductance parameters used in COBRA-TF and in SIMULATE5. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202124702034 |