High-order compact scheme for the two-dimensional fractional Rayleigh–Stokes problem for a heated generalized second-grade fluid

In this article, an unconditionally stable compact high-order iterative finite difference scheme is developed on solving the two-dimensional fractional Rayleigh–Stokes equation. A relationship between the Riemann–Liouville (R–L) and Grunwald–Letnikov (G–L) fractional derivatives is used for the time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-05, Vol.2020 (1), p.1-21, Article 233
Hauptverfasser: Khan, Muhammad Asim, Ali, Norhashidah Hj. Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, an unconditionally stable compact high-order iterative finite difference scheme is developed on solving the two-dimensional fractional Rayleigh–Stokes equation. A relationship between the Riemann–Liouville (R–L) and Grunwald–Letnikov (G–L) fractional derivatives is used for the time-fractional derivative, and a fourth-order compact Crank–Nicolson approximation is applied for the space derivative to produce a high-order compact scheme. The stability and convergence for the proposed method will be proven; the proposed method will be shown to have the order of convergence O ( τ + h 4 ) . Finally, numerical examples are provided to show the high accuracy solutions of the proposed scheme.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-02689-8