Efficient Degradation of Ciprofloxacin in Water over Copper-Loaded Biochar Using an Enhanced Non-Radical Pathway

The development of an efficient catalyst with excellent performance using agricultural biomass waste as raw materials is highly desirable for practical water pollution control. Herein, nano-sized, metal-decorated biochar was successfully synthesized with in situ chemical deposition at room temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.28 (24), p.8094
Hauptverfasser: Guo, Ting, Yang, Qinyu, Qiu, Ruoqi, Gao, Jie, Shi, Jingzhuan, Lei, Xiaoyun, Zhao, Zuoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of an efficient catalyst with excellent performance using agricultural biomass waste as raw materials is highly desirable for practical water pollution control. Herein, nano-sized, metal-decorated biochar was successfully synthesized with in situ chemical deposition at room temperature. The optimized BC-Cu (1:4) composite exhibited excellent peroxymonosulfate (PMS) activation performance due to the enhanced non-radical pathway. The as-prepared BC-Cu (1:4) composite displays a superior 99.99% removal rate for ciprofloxacin degradation (initial concentration 20 mg·L ) within 40 min. In addition, BC-Cu (1:4) has superior acid-base adaptability (3.98~11.95) and anti-anion interference ability. The trapping experiments and identification of reactive oxidative radicals confirmed the crucial role of enhanced singlet oxygen for ciprofloxacin degradation via a BC-Cu (1:4)/PMS system. This work provides a new idea for developing highly active, low-cost, non-radical catalysts for efficient antibiotic removal.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28248094